List of References


3. A. Ashtekar (N/A), “Gravity and the Quantum”, Institute for Gravitational Physics and Geometry, Physics Department, 104 Davey, Penn State, University Park, PA 16802, USA.


44. M. L. Kutner (N/A), “Astronomy: A Physical Perspective”.


47. A. Jaffe and E. Witten (N/A), "Quantum Yang-Mills theory.", Official problem description.


53. A. Mayaanjali (N/A), “The Schrödinger's Wave Equation”. 


58. B. Hatfield (1989), “Quantum Field Theory of Point Particles and Strings”, Addison-Wesley, Reading, MA.


74. Y. Ne'emann (2000) [1964], "Derivation of strong interactions from gauge invariance".


81. J. I. Friedman (N/A), "The Road to the Nobel Prize", Hue University. Retrieved 2008-09-29.


91. R. D. Klauber (2012), “Pedagogic Aids to QFT”.


98. R. Shrock (2007), "Some Recent Results on Models of Dynamical Electroweak Symmetry Breaking".


117. (2005), BlackLight Power, Inc.


128. D. Stahlke (N/A), “PHYS652 Quantum Decoherence and the Measurement Problem”.

129. Shankar (N/A), “Principles of Quantum Mechanics”.


140. D. M. Harrison (1999), “Bell’s Theorem”, Department of Physics, University of Toronto, harrison@physics.utoronto.ca. This is version 1.27.


159. J. L. Bell (N/A) “Lectures on the Foundations of Mathematics”, THE PHILOSOPHY OF MATHEMATICS.


166. H. B. Enderton (N/A). “Cantor’s Theorem”.


168. W. A. R. Weiss (2008), “AN INTRODUCTION TO SET THEORY”.


177. M. M. Dougherty (N/A), “Mathematical Logic and Sets”, Department of Mathematics Southwestern Oklahoma State University.


182. W. Raji (N/A), “An Introductory Course in Elementary Number Theory”.


201. B. McKay (2014), “LINEAR ALGEBRA TENSOR PRODUCT NOTES”.


246. J. Schombert (N/A), “Anthropic Principle”, Department of Physics, University of Oregon.


